skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Madonna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Parametric generators combine coverage-guided and generator-based fuzzing for testing programs requiring structured inputs. They function as decoders that transform arbitrary byte sequences into structured inputs, allowing mutations on byte sequences to map directly to mutations on structured inputs, without requiring specialized mutators. However, this technique is prone to thehavoc effect, where small mutations on the byte sequence cause large, destructive mutations to the structured input. This paper investigates the paradoxical nature of the havoc effect for generator-based fuzzing in Java. In particular, we measure mutation characteristics and confirm the existence of the havoc effect, as well as scenarios where it may be more detrimental. Our evaluation across 7 real-world Java applications compares various techniques that perform context-aware, finer-grained mutations on parametric byte sequences, such as JQF-EI, BeDivFuzz, and Zeugma. We find that these techniques exhibit better control over input mutations and consistently reduce the havoc effect compared to our coverage-guided fuzzer baseline Zest. While we find that context-aware mutation approaches can achieve significantly higher code coverage, we see that destructive mutations still play a valuable role in discovering inputs that increase code coverage. Specialized mutation strategies, while effective, impose substantial computational overhead—revealing practical trade-offs in mitigating the havoc effect. 
    more » « less
    Free, publicly-accessible full text available June 6, 2026